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ABSTRACT 

The contribution treats a sophisticated concept in the area of GPS-based height determination with 
components being appropriate to branch out into different classes of standard approaches, depending 
on the kind of data sources as well as on the principal target. Basicly any kind of height data, namely 

geoid models N, vertical deflections (ξ,η), heights H, levelling ∆H, GPS heights h and GPS baselines 

∆h may be combined. A powerful mathematical tool within the general concept is the developed finite 
element model (FEM) surface approximation, which may be set up in different ways for the represen-
tation of the height reference surfaces (HRS). This FEM is parametrized by sets of bivariate polynomi-
als, and continuity conditions guarantee a continuous transition of the FEM surface along the edges of 
neighbouring meshes in any area size. In opposite to digital terrain models, the nodes of the FEM 
mesh may differ from the position of the data used for the FEM determination.  

The first part of the contribution treats the class of already practical working standard 
approaches, developed to transform in a statistically controlled way ellipsoidal GPS heights h into 
heights H of a standard height system. The so called "geoid refinement approach" as general standard 
means, that a datum adapted geoid model N is used as direct observation, while the above mentioned 
FEM serves as additional overlay to improve the final representation of the HRS. Together with the 
special cases of a "pure FEM approach" and a "pure geoid approach", all three approaches provide a 
flexible set of models, which are implemented in the software HEIDI2. Different pilot projects in se-
veral parts of Europe finished successfully, and the GPS height integration approaches are meanwhile 
used as a standard in several state survey departments. The experience shows that a high precision 
level for a GPS based height determination up to a 5 mm level in rather large areas is achieved, e.g. 
using the European gravimetric geoid  (EGG97, see Denker and Torge, 1997). 

A brief second part and class of approaches treats the application of the FEM component for the 
purpose of height system transformation (e.g. the conversion of so called NN-heights to normal 
heights started in Germany presently). 

The third part of the presentation and class of approaches considers the so called general ap-
proach, where the HRS is completely established by a FEM, using different datum adapted geoid mo-
dels NG, terrestrial height information H and ellipsoidal GPS heights h as data sources. The result of 
the computation and "geoid mapping" respectively, leads to a Digital FEM Height Reference Surface 

(DFHRS). Additionally also deflections of the vertical (ξ,η) are treated as a new observation com-
ponent of the concept. The DFHRS may be set up as data base for a datum free direct GPS-based on-

line heighting in DGPS networks. First results of a pilot project in the German SAPOS (Satellite Po-
sitioning Service of  the German Landesvermessung) network are reported.   

 
 



1.  INTRODUCTION 

The transformation of a geocentric cartesian position (x,y,z) determined from DGPS provides the 
plane position represented by the geographical latitude and longitude (B,L) and the ellipsoidal height 
h, all referring to the datum of the respective reference station(s) used in DGPS. Both (B,L) and h de-
pend on the metric and shape of the reference ellipsoid (a = main axis, f = flattening) used in the com-
putation of (B,L,h). In general the GRS80 or the WGS84 ellipsoid are used in the context with GPS. 
The transition of GPS results (B,L,h)1, in the following described as system 1, to a set of national net-
work coordinates (B,L,h)2, described as system 2, is to be performed by a threedimensional similarity 

transformation. There three translations (u,v,w), three rotations (ex,ey,ez) and one scale difference ∆m 
between both datum systems have to be taken into account. Using a taylor series expansion with li-
nearization point (B,L,h)1 and assuming small rotations, we may write the datum transition from 
system 1 to system 2 on splitting the threedimensional problem equivalently into the plane and the 
height component in the following way (Heiskanen and Moritz, 1967; Vanicek and Krakiwsky, 1986; 
Dinter et al., 1997a; Jäger 1998, 1999): 
 
Plan components (1), (2) of the threedimensional datum transition   
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Ellipsoidal height component (3) of a threedimensional datum transition  
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N(B) and M(B) are introduced as the latitude dependent quantities of the so called normal and the me-
ridian radius of curvature respectively. For W(B) and e2 we have W(B)=a/N(B) and  e2=2f-f2. In gene-



ral the parameter changes ∆a and ∆f are known, and the respective quantities are introduced as deter-

ministic corrections. Respective corrections due to ∆a and ∆f are therefore not mentioned in the fol-
lowing. 

It is worth to be mentioned, that the transformation of GPS-results (B,L,h)1 into any other se-
cond plan system (B,L)2  may be restricted to (1), (2) on using only plan coordinates (B,L)2 as identi-

cal points for the determination of the datum parameters d=(u,v,w,ex,ey,ez, ∆m). In this way we may 
remain strict, and at the same time we need neither heights H2 nor geoid information NG (see fig. 1) 
from the national network height system 2. This plan integration approach was successfully applied 
e.g. in the new ITRF-related national network of Namibia (Christmann et al., 1999) and in other pro-
jects. 
 

If we now go towards the problem of a GPS-based determination of standard heights H2 referring to a 
physically defined height reference system HRS (fig. 1),  we recognize, that because of H2=h2-NG, we 
need some kind of "geoid model"  NG.  
In this context we also have to consider in real life applications, that any geoid model NG' taken from a 
geoid data base (Denker and Torge, 1997) has – for being just another surface in space – an own more 
or less small but unknown datum, which is to be described by a set of geoid datum parameters  

dG=(u,v,w,ex,ey,∆mG). 
The principal relation between the standard height H2, the ellipsoidal height h2 and the height 

reference surface  NG of the height system in target of a GPS-based height determination reads 
 

H2 = h2 – NG                           (4a)  

and is shown in fig. 1. GPS provides the heights h1 with respect to formulas (1), (2), (3). Due to the 
occuring datum effect dG on using a geoid data-base NG(B,L)', we arrive in real life practice starting 
from (3) and relate it to (4a), at the complete formula reading: 

))('()()),,,,,('(),,,,,( 11112 Gdd NNhhmeewvuNNmeewvuhhH GGyxGyx +∂−+∂=∆+∂−∆∂+=       (4b) 

Assuming that the data base geoid values NG(B,L)' are referred to (B,L)1, we see directly from (1), (2), 
(3) in the context with (4b), that the parameters within the different sets d and dG separate due to the 
variation of the heights h1 and NG within the coefficients belonging to d and dG respectively .  

The standard approach of a threedimensional transformation, using only one common set of seven 
parameters d, will therefore not be free from systematic errors. From (1), (2) and (4b) follows that a 
threedimensional GPS-integration based on standard heights H2 and a geoid model NG  has to consider 
in total 13 parameters within d and dG. 
 

 
 



Figure 1. Ellipsoidal GPS height h, height reference surface HRS or briefly „geoid“ NG 

and earth surface ES at a point  P(B,L). 
 
If we -  in analogy to the plane problem discussed above – however restrict ourselves to a GPS-inte-
gration concerning the isolated GPS height integration problem, meaning the transformation of GPS 
heights h1 to standard heights H2, we derive from (3) and (4b) : 
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         (5a) 

We recognize from (5a), that due to some common coefficients, only one set of common parameter-
differences for the translations and rotations 

 d‘ = (u‘, v‘, w‘, ex‘, ey‘)    = (u-uG, v-vG, w-wG, ex-ex,G, ey-ey,G)                   (5b) 
 

may be introduced, instead of two different sets, in a geoid-model based GPS-height integration. Sepa-

rate parameters however have to be kept concerning the scales ∆m and ∆mG in d and dG (4b). 

 

2.  STANDARDS OF GPS HEIGHT  INTEGRATION 

With the trend of replacing old national datum systems in favour of ITRF-related datum systems and 
respective DGPS reference station systems (like e.g. SAPOS in Germany), the datum problem for the 
plan component (B,L) in GPS-based positioning will vanish by and by. But for the reason of a physi-
cally different height reference surface HRS for the standard heights H (fig. 1) defined by geopotential 
numbers, the problem of a transition of ellipsoidal GPS-heights h1 to the standard heights H2 referring 
to a HRS – or briefly spoken „geoid“ (a classical geoid for an orthometric height system, a quasi-geoid 
for a normal height system etc.)  – will remain .  

Different approaches have been developed by the "Karlsruhe working group" (Dinter et al., 
1997a,b) up to now. The advantages of the above splitting into the plan (1), (2) and height component 
(3), (5a,b) respectively led to a powerful and flexible set of GPS-integration approaches, which will be 
presented and discussed in the following chapters 2.1, 2.2 and 2.3. 
 

2.1. Finite Element Representation (NFEM) of the Height Reference Surface (HRS) 

A powerful and central tool within the GPS height integration approaches of the "Karlsruhe working 
group" consists in the representation of the "geoid" NG or better the height reference surface HRS (fig. 
1) by a finite element surface, which is  carried by the base functions of bivariate polynomials set up in 
the meshes of a  square grid (fig. 2) with irregular nodal point positions (Dinter et al., 1997a,b). 

In this way the finite element model NFEM(p,x(B,L),y(B,L)) of the HRS (6) represents in the 
ideal sense h=H+NG - datum free and independent of the type of the standard height system H - the 
height NG of the HRS over the ellipsoid as a function of the plane position (B,L) and the parameter 
vector p. The plan position (B,L) is replaced in (6) by the metric coordinates (y(B,L)= “East“ and 
x(B,L)= “North“) such as UTM or Gauß-Krüger coordinates, which are functions of (B,L). 



The mesh size and shape (fig.2), and at the same time the approximation quality of 
NFEM(p,x,y) with respect to the true HRS (fig. 1) may be chosen arbitrary. A special advantage and 
characteristic of the NFEM(p,x,y) representation consists last but not least in the fact, that the nodal 

points (•, fig. 2) of the FEM grid are totally independent of the geodetic network and data points 

(h,H,∆H,∆h, the geoid heights NG(B,L)' and the vertical deflections (ξ,η)), which are used for the 
determination of the parameter vector p of NFEM(p,x,y). Without loss of generality we choose in the 
following bivariate polynomials of degree l as basic function to carry the surface NFEM(p,x,y) within 
the different meshes. The corresponding polynomial coefficients are introduced as aij,k , so that the 
total parameter vector p (6) consists of all coefficient sets aij,k over m meshes (i=0,l; j=0,l and k=1,m). 
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Fig. 2: Nodal points •• and edges of a FEM-meshing and geodetic measurements (h, H, 
∆∆H,  ∆∆h and optionally geoid-models NG' and deflections of the vertical (ξ,η) as additional data 
sources, chap. 4.2. ) for the determination of the finite element model NFEM(p,x,y) of the HRS 

or for geoid refinement.
 

Depending on the plan position (x,y) the local geoid height NG is to be received from the finite ele-
ment representation NFEM(p,x,y) by first identifying the corresponding k-th mesh according to the 
position (x,y) by means of the vector of nodal point positions. Then NG is to be evaluated from 
NFEM(p,x,y) by the local polynomial with coefficients aij,k at the plane position (x,y). 

To imply a continuous surface NFEM(p,x,y) one set of continuity conditions of different type 
C0,1,2  (6) has to be set up at the computation of NFEM(p,x,y) for each couple of neighbouring meshes 
m and n. The continuity type C0 implies the same functional values along each common mesh border. 
The continuity type C1 implies the same tangential planes and the continuity type C2 the same 
curvature along the common borders of the HRS model NFEM(p,x,y). The continuity conditions occur 
as additional condition equations related to the polynomial sets of the coefficients aij,m and aij,n  of each 
couple of neighbouring meshes m and n. The number and the mathematical contents of these condition 



equations depend on the polynomial degree l as well as on the continuity equation type (Dinter et al., 
1997a,b). 

The standard in the application of NFEM(p,x,y) in GPS height integration research and projects 
led to  the best experiences on using C0-conditions and a degree of l=1,2 for a small mesh sizes up to 
(10-40) km, and degrees up to l=3 for larger mesh sizes. For the case l=3 and Co-continuity for 
NFEM(p,x,y) we have to introduce for each neighbouring mesh border the following condition equa-
tions (Dinter et al., 1997a,b): 

 

da30 dx3 + da21 dx2dy  + da12 dxdy2+ da03dy3 = 0             (7a) 

da30∆3 + da20∆2dy + da10∆dy2 + da00dy3           = 0             (7b) 

da10dxdy2  +  da01dy3  +  2da20∆dxdy  + da11∆dy2  +  3da30∆2dx  +  da12∆2dy    = 0        (7c) 

da20dx2dy  +  da11dxdy2 + da02dy3 + 3da30∆dx2 +  2da21 ∆dxdy + da12∆dy2           = 0          (7d) 
 

With respect to the known nodal points A(yA,xA) and E(yE,xE) of the mesh grid (fig. 2) we introduced 

in (7a,b,c,d) the abbreviations dx=xE-xA, dy=yE-yA, ∆=dy⋅xE-dx⋅yA and daij=aij,m-aij,n. The index A 
means the starting and the index E the ending point of the common border of each two neighbouring 
meshes m und n.  
 
 

2.2.  Standard approaches of GPS height integration  
 

Starting with formula (5a,b) we immediately arrive at the so called pure geoid approach. This 
approach is to be applied in a GPS height integration, as soon as good geoid information NG(B,L)' is 

available. The parameters within the datum part ∂h,G(d‘,∆mG) have to be estimated. With some 

simplification in the scale term1 for ∆m,  the pure geoid approach reads in the corresponding system of 
observation equations as follows:  

h               + v  =  m⋅ H + NG                                 (8a) 

NG (B,L)'  + v  =  NG   +  ∂h,G (d‘,∆mG)                           (8b) 
H              + v  =       H                     (8c) 

GPS heights h, a geoid model NG(B,L)' and terrestrial heights H may be used as obervations. Of 

course the formulas are easy to extend to levelling ∆H and GPS height baselines ∆h, which are also 

both included in all subsequent approaches. Apart from the datum part ∂h,G (d‘,∆mG) the geoid model 

NG(B,L)' is treated as so called ‚direct observation‘. The datum part ∂h,G (d‘,∆mG) (see also fig. 3) may 
also model and remove some long waved systematics between the geoid model NG(B,L)'  and the HRS  
(Dinter et al., 1997a,b; Dinter, 1997). 

In polarity to (8a,b,c) and for case respectively, that no geoid-information is available, we may 

derive the HRS completely from the observations (h, H, ∆H, ∆h) as a finite element representation 
NFEM(p,x,y) (6) of the HRS. This approach is called the pure finite element approach. It reads: 

h + v  =  m⋅ H + NFEM(p,x,y)                        (9a) 
H + v =       H                                  (9b) 
 

The powerful synergy of both above approaches finally leads to the so called „geoid-refinement 
approach“. It is used for the case that the available geoid information NG(B,L)' is to be refined by a 
finite element model NFEM(p,x,y), which is acting as additional overlay to improve the geoid model 
(see fig. 3). The geoid-refinement approach reads: 

                                                        
1  The strict scale term according (3) looks like in (12a). 



h   +    v        =  m⋅ H + NG                              (10a) 

NG(B,L)' + v =              NG + ∂h,G (d‘, ∆mG)   + NFEM(p,x,y)              (10b) 
H           + v  =       H                                    (10c) 
 

The pure geoid aproach (8a,b,c) and the pure finite element approach (9a,b) are resulting as special 
cases of the above geoid-refinement approach (10a,b,c). 
 

 
 

Figure 3. Geoid-refinement approach as a synergetic combination of geoid information NG(B,L)' 

submitted to a datum change (NG', datum 1 →→ NG, correct datum 2)  and the  finite element mo-
del NFEM(p,x,y) as overlay (dotted).  It is introduced to describe remaining systematics  bet-

ween NG and the true height reference surface HRS . 
 

2.3. Example of a GPS height integration performed with the software HEIDI2  
 

The following example of a GPS height integration treats the use of the commercially available 
EGG97 geoid model (Denker and Torge, 1997) for an integration of GPS heights h into the normal 
height system H of the height network of Tallinn, Estonia. The network has an extension of 40 km by 
25 km. The computations were done by the author in the frame of a European so-called TEMPUS 
project between the Tallinn Technical University, the University of Technology Karlsruhe and other 
European universities. The given 23 ellipsoidal GPS-heights h in the EST92 datum were introduced 
with a standard deviation of 3 mm, as proved before in a free adjustment of the respective GPS height 
baselines.  

The given normal heights were introduced with a standard deviation of 3mm, and the EGG97 
observations NG(B,L)' with a precision of 5 mm. The different versions of the GPS height integration 
were computed on the base of the pure geoid approach (8a,b,c) with the software HEIDI2 © Dinter-
Illner-Jäger. 

The result of a first version, where - in sense of the unrealistic ideal (4a) - no datum transition 

∂h,G(d‘,∆mG) for h and NG(B,L)' was introduced, is presented in fig. 4. Each known point was once 
computed as a „new point“ determined by „GPS and geoid“. The residuals in the identical points H are 

in the range of  up to ± 3.5 cm and show the typical effect of a neglected datum tilt in this high 
range (see also Dinter et al., 1997 a,b). 



 
 

Figure 4: GPS height integration for the Tallinn network by the pure geoid approach 

without taking a necessary datum-transition ∂∂h,G (d‘,∆∆mG) part for h and NG(B,L)' into account: 

The residuals in the known control points - treated as new points - show the systematics of a da-

tum tilt up to ±± 3.5 cm.
 

The fig. 5 shows the next set of computations due to the pure geoid approach (8a,b,c) used as com-

putation model for a GPS height integration. Now a datum transition ∂h,G(d‘,∆mG) (8b) for NG(B,L)' 
was taken into account. The residuals in the known control remain less than 1 cm, the mean residual is 

in the range of  ± 4 mm. In this version of a GPS-based height integration all observation components 
were consistent with their assumed a priori precision and no gross errors occured in all runs. An  addi-
tional geoid refinement might be computed by the geoid refinement approach (10a,b,c).  

 

 
Figure 5.  GPS height integration for the Tallinn network by the pure geoid approach on taking 

the necessary datum-transition ∂∂h,G (d‘,∆∆mG) part for h and NG(B,L)' into account. The residuals 

in the known control points - treated as new points – now keep in a mean range of only ±±  4mm. 



 
For further examples of GPS height integration in medium and in large scale networks and also due to 
the other above approaches like the geoid refinement approach (10a,b,c) and the pure FEM approach 
(9a,b) it is referred to (Dinter et al., 1997a,b; Dinter, 1997; Jäger und Mengesdorf, 1998; Jäger, 1999). 
 

3. HEIGHT  SYSTEM  TRANSFORMATION 
The essential components of the above GPS height integration concept  -  namely the datum transfor-
mation part for heights (3) and the finite element representation NFEM(p,x,y) of a HRS (6) -  may be 
transferred to the problem of transforming old heights HHold to new heights Hnew of a new height system. 
In analogy to the above geoid refinement approach (10a,b,c) the most general approach for a height 
system transformation reads:  
  

HHold  +  v  =  Hnew  + ∂H(d)  +  HFEM(p,x,y)             (11a) 

HHnew  +   v  =              Hnew                                             (11b)   

The datum transformation parameters d as well as the parameters p of the finite element model are to 
be determined by identical points (HHold ,Hnew) in both systems. 
 

 

4. ONLINE GPS-HEIGHTING –  PRODUCTION AND APPLICATION OF A           
DIGITAL  FINITE  ELEMENT  HEIGHT  REFERENCE  SURFACE (DFHRS)   

4.1. Digital Finite Element Height Reference Surface (DFHRS) concept for an online GPS 
Heighting   

The profile and target of an online GPS-Heighting is easy to formulate (see fig. 6): An ellipsoidal 
GPS-height h, determined at a position P(y(B,L), x(B,L)), is to be made convertable directly to the 
height H of the standard height system. The converted height H should result online on applying a re-
spective correction to h, and the resulting H should not suffer with a quality-decrease compared to the 
heights H resulting from a postprocessed GPS height integration (applying the approaches presented in 
chap. 2).  

In this chapter a general concept is presented, which fulfils all above requests and shows besides 
this even some more positive aspects. The concept is to produce in a first step in a controlled way a so 
called Digital-Finite-Element-Height-Reference-Surface (DFHRS) as a new kind of data base product 
(= production step). 

The second step is to make this data base accessible online  –  in an active or passive way -  for 
DGPS- Heighting (= application step). That means, that either the DGPS user has the DFHRS at his 

disposal or the DGPS service exclusively uses the DFHRS for the evaluation of a correction ∆ to 
transform a GPS height h to the height H of the standard height system (principle, see fig. 6). 

The production step of the DFHRS reads in the system of observation equations as follows: 
 

h  + v   =  H - (h+N⋅W2 )⋅ ∆m + NFEM(p,x,y)          (12a) 

NG(B,L)' + v = NFEM(p,x,y) -∂h,G (d‘, ∆mG)            (12b) 
H            + v  = H                               (12c) 

Identical points (H, h), and if available, one or a number of geoid models NG(B,L)', are used as obser-
vations to produce the DFHRS by a least squares estimation related to (12a,b,c). The DFHRS on the 
right side is represented completely by the finite element model NFEM(p,x,y) of the HRS. 



NFEM(p,x,y) is modelled according to (6) and again togehter with continuity conditions. This means 
that the geoid model input NG(B,L)' is "mapped" to the DFHRS by removing the datum part 

∂h,G(d‘,∆mG). An additional NFEM-refinement term may be set up in (12b). The production step of the 
DFHRS (12a,b,c) has to be embedded in a statistical quality control concept, e.g. of a least squares 
estimation, so that any component including the input of „mapped“ and datum-adapted geoid-model, 
can be controlled (Ackermann, 1999; Schwarzer, 2000). 

The decisive components and formula parts of the production step, which are afterwards needed 
in the application step – namely in an online GPS-Heighting - are contained in (12a). Equation (12a) 
leads to the following correction scheme, which has to be applied to the GPS height h in an online 
application of the DFHRS data base with respect to convert it to the standard height H:  
 

H =  h + ∆  =  h  + corr1  +  corr2  = h- NFEM(p,x,y) + (h+N⋅W2)⋅∆m        (13) 
 

The first correction part „corr1“ is due to the DFHRS („geoid correction“), and „corr2“ is due to the 

scale ∆m between the GPS heights h and those of  the standard height system H. 
 

4.2. Extension of the approaches with respect to deflections of the vertical 

As a pursuit of the DFHRS concept given in Jäger (1998, 1999) the central cernal of a "geoid 

mapping" related to the geoid heights NG(B,L)' is now extended to vertical deflections ξ (meridian) 

and η (prime vertical) as additional data sources for the evaluation of the DFHRS. The vertical deflec-

tions ξ and η may either result from astronomical observations or are just to be taken from any modern 
"geoid data base" (Denker and Torge, 1997).  Starting with the interesting DFHRS-representation (6) 
we first rewrite NFEM(p,x,y) as the following product:  

NFEM(p,x,y) = F(x(B,L),y(B,L)) ⋅ p                                (14a) 

With the partial derivatives FB and FL of F(x,y) in latitude and longitude respectively, which depend 
on the individual type of the mapping functions x=x(B,L) and y=y(B,L), and  the standard formulas 
for the differential way increment ds on the ellipsoid,  

∂s/∂B = M(B) and ∂s/∂L = N(B)⋅cos(B)                    (14b) 

we arrive at the following observation equations for  vertical deflection observations ξ and η: 

ξ + v= - FB  / M(B)          ⋅ p  +  ∂B(dξ,η)                (14c) 

η+ v= - FL/(N(B)⋅cos(B))⋅ p + ∂L(dξ,η)⋅cos(B)            (14d) 

M(B) and N(B) are again the so-called meridian and normal radius of curvature respectively. The da-

tum parts ∂L(dξ,η) and ∂L(dξ,η) are set up according to (1) and (2) with a datum parameter set dξ,η. In 

case of vertical deflection observations (ξ,η) related to the geoid surface the "height" h must be set to 

h=: NG(B,L)' in ∂L(dξ,η) and ∂B(dξ,η). 
It is evident that using (14c) and (14d) - which are in general available on geoid data bases 

(Denker and Torge, 1997), but remain unused in the context of practical GPS-integrations and most 
GPS-height integration concepts - will further increase the geometric quality and the reliability of 
respective DFHRS data base computations. 

The observation equations (14c,d) may of course also be added to those belonging to the 
standard of a postprocessed GPS height integration (10a,b,c).  



 
 

Figure 6.  DFHRS (left) and its use (right) as DFHRS data base for a DGPS-based online  

heighting (h→→H). 
 

4.3. Example of a DFHRS production  
Fig. 7 shows the finite element grid of the 30 km by 30 km "Mosbach" area near Heidelberg, where a 
DFHRS was computed restricted to (12a,b,c) in the frame of a pilot project (Ackermann, 1999). For 
different investigations the whole area was parted into 1, 4, 9 and at maximum 16 meshes as presented 
in fig. 7. 

 
 

 

Figure 7.  Meshing and data design of the identical points (H,h) of   
a DFHRS computation for the Mosbach region. 

: map grid,  •• GPS Rover Station, � GPS Reference Station  



 
A first kind of DFHRS was produced using all 46 identical points (H, h) in both systems but no addi-
tional geoid information NG(B,L)'. The best DFHRS resulted for this case by a polynomial degree l=2 
and a k=4 meshes grid with an avarage side lenght of 12 km. In this way the complete DFHRS for the 
area (fig. 7) is represented by k=4 sets of each six coefficients pk=(aoo, ao1, a1o, ao2, a11, a2o)k and an ad-
ditional scale parameter both evaluated  from (12a,c). The resulting DFHRS shows a mean accuracy of 
less than 1cm, and the maximum residual of the conversion of ellipsoidal GPS heights h to standard 
heights H on using the DFHRS and the respective correction (13) formula remains smaller than 1.5 
cm. 

About the same results of quality for the  DFHRS were achieved using the complete "geoid 
mapping" as given in (12a,b,c). The computations were performed using the EGG97 as geoid model 
NB(B,L)' and again a polynomial degree l=2 and k=4 meshes.  The advantage of the complete 
approach is of course, that the numer of identical points (h,H) is to be kept low on a minimum of 7 
points (even only 4 in a simplified datum parametrization) (Ackermann, 1999; Dinter et al., 1997a,b) 

for the whole area, according to the number of datum parameters (d‘, ∆mG, ∆m) (4b), (5a,b).  No gross 
errors were detected in the observation components h, NB(B,L)' and H in the step of DFRHS-
production (12a,b,c). Other  successful computations were performed recently for the above Tallinn 
area (fig. 4, 5) and for a 60 km by 80 km area at Frankfurt in Hessen, Germany (Ackermann, 1999). 

 
 

4.4. Outlook for the DFHRS concept  

The DFHRS can be characterized as a new product appropriate for an online GPS-heighting with best 
quality and economical properties. The wellknown geoid datum problem and individual datum calibra-
tion steps using identical points (h,H) during or before GPS heighting respectively are completely 
dropped out. The DFHRS enables a direct GPS-heighting with a general suitability for anybody in the 
frame of DGPS-applications and DGPS services.  

The production of the DFHRS (12a,b,c) is performed as an overdetermined least squares adjust-
ment, which enables a quality control of all components including the input of geoid models NB(B,L)'. 

The computation of the DFHRS product may be repeated at any time, as soon as new data (h, H, ∆H, 

∆h, NB(B,L)' and (ξ,η)) arise, or even if a change of the height system type H or height datum is in-
tended.  

The variation of the mesh size further enables to produce on demand different DFHRS products 
with a different geometric quality (and price) for an online height positioning purpose. Besides that 
there are two different ways for a DFHRS marketing: The first way is to keep the DFHRS on the side 

of the data- and DFHRS owner and transmit only the correction ∆ (13) by the DGPS-service. This re-
quires however that the DGPS customer transmits his GPS-position (B,L,h) to the DGPS-service and 
gets back the converted height value H. The other way is of course to sell - like also usual in the con-
text with modern geoid-models (Denker and Torge, 1997) – the DFHRS data base directly to the 
DGPS user. The first experiences with the DFHRS concept based on (12a,b,c) are much promising 
(Ackermann, 1999).   

As for most countries geoid information NG(B,L)' is available, the DFHRS evaluation may in 
general be set up together with a "geoid mapping" (12b). For the case (12a,b,c)  the best quality and 
control of the DFHRS will be achieved, and at the same time the number of identical points (h,H) for 
control and datum parameter estimation remains small even for large areas. The development of 
comfortable and powerful C++ software for the production of DFHRS data bases is continued 



(Schwarzer, 2000), and comprising also the implementation and exploitation of additional 

observations (14c,d) of type vertical deflections (ξ,η). So the observation amount in DFHRS 

computation related to a "geoid data mapping" - completed with respect to (ξ,η) - will be three times 

higher than on using only NG(B,L)'. The additional vertical deflection observations (ξ,η) – i.e. taken 
from a geoid data base (Denker and Torge, 1997) - will at the same time provide an essential improve-
ment of the geometric quality and an increase of the statistical reliabilty of a DFHRS. 

The additional observation equations (ξ,η) (14c,d) may of course also be set up in a classical 
postprocessed GPS-height integration in addition to (10a,b,c).  
 Concerning the DFHRS concept, the implementation of software for the production step 
(Ackermann, 1999; Schwarzer, 2000) as well as for the application of resulting DFHRS data bases 
was in online DGPS carried out recently (Seiler , 1999). 
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